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Abstract. The feedback between planetary warming and soil carbon loss has been the focus of considerable scientific attention 

in recent decades, due to its potential to accelerate anthropogenic climate change. The soil carbon temperature sensitivity is 

traditionally estimated from short-term respiration measurements -- either from laboratory incubations that are artificially 

manipulated, or field measurements that cannot distinguish between plant and microbial respiration. To address these 10 

limitations of previous approaches, we developed a new method to estimate temperature sensitivity (Q10) of soil carbon directly 

from warming-induced changes in soil carbon stocks measured in 36 field experiments across the world. Variations in warming 

magnitude and control organic carbon percentage explained much of field-warmed organic carbon percentage (R2=0.96), 

revealing Q10 across sites of 2.2, [1.6, 2.7] 95% Confidence Interval (CI). When these field-derived Q10 values were 

extrapolated over the 21st century using a post-hoc correction of 20 CMIP5 Earth system model outputs, the multi-model mean 15 

soil carbon stock changes shifted from the previous value of 83 ±156 Pg-carbon (weighted mean ± 1 SD), to 16±156 Pg-carbon 

with a Q10 driven 95% CI of 245±194 to -99±208 Pg-carbon. On average, incorporating the field-derived Q10 values into Earth 

system model simulations led to reductions in the projected amount of carbon sequestered in the soil over the 21st century. 

However, the considerable parameter uncertainty led to extremely high variability in soil carbon stock projections within each 

model; intra-model uncertainty driven by the measured Q10 was as great as that between model variation. This study 20 

demonstrates that data integration may not improve model certainty, but instead should strive to capture the variation of the 

system as well as mean trends. 

1 Introduction 

The flux of carbon dioxide between the soil and atmosphere is a major control on atmospheric carbon dioxide concentrations. 

Warming temperatures, driven by increases in atmospheric carbon dioxide, have the potential to simulate carbon 25 

decomposition, accelerating its release into the atmosphere (Davidson and Janssens, 2006). If this is not counterbalanced by 

an equivalent increase in primary productivity (the opposing carbon flux) then it has the potential to drive a land carbon-

climate feedback that will accelerate anthropogenic climate change. Recent global compilations of data from ecosystem 

warming experiments lend support to this idea (Carey et al., 2016), suggesting that warming alone could drive a loss of carbon 
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from the upper soil horizons (Crowther et al., 2016). However, these studies addressed the impact of warming in isolation, and 

it remains unclear how this process will interact with the variety of other global change drivers to affect the global soil carbon 

stock over the rest of this century. Reflective of such uncertainty, soil carbon changes projected for 2100 under business-as-

usual scenario for Coupled Model Intercomparison Project Phase 5 (CMIP5) range from -70 to 250 Pg-carbon across different 

Earth system models (Todd-Brown et al., 2014), making the land-carbon feedback one of the largest sources of uncertainty in 5 

future climate projections (Friedlingstein et al., 2014). Improving the soil carbon component of the Earth system models is 

essential to predicting the future evolution of the Earth system and thus establishing meaningful greenhouse gas emissions 

targets. 

A fundamental parameter describing soil temperature-sensitivity in soil carbon models is the Q10 – the factor of the change in 

decomposition rate associated with 10°C of warming from a reference temperature (Davidson and Janssens, 2006; Lloyd and 10 

Taylor, 1994). Traditional laboratory incubations have found a wide range of Q10 values, varying from 1.4 (Townsend et al., 

1997) to > 3 (Davidson et al., 1998, 2006) with 2 being the most commonly accepted value. Complicating this, theoretical 

analyses based on chemical kinetics suggest Q10 is itself dependent on temperature (Davidson and Janssens, 2006; Lloyd and 

Taylor, 1994), though these values are typically very close to 2 in most environmental temperature ranges (Lloyd and Taylor, 

1994). More recently, large-scale analyses of field respiration converge on Q10 estimates of 1.4 to 1.5 (Bond-Lamberty and 15 

Thomson, 2010; Hashimoto et al., 2015; Mahecha et al., 2010). Unsurprisingly, this temperature response is also critical in 

Earth system models, where the temperature sensitivity parameter is known to be a major driver of variation (Booth et al., 

2012; Jones and Cox, 2001; Jones et al., 2006). However, it is unclear what is driving the lower Q10 estimates in these field-

based syntheses compared to the average lab-based estimates from single-site studies, and there appears to be a relatively wide 

range of ‘typical’ Q10 values in the literature. Nevertheless, most Earth system models use values that range from 1.5 (Oleson 20 

et al., 2013; Raddatz et al., 2007) to 2 (Bonan, 1996; Cox, 2001).  

Traditionally, these Q10 values have been calculated from warming-induced changes in soil respiration rates. However, this 

approach has two main limitations: 1) respiration rates measured under idealized laboratory conditions fail to reflect the 

structure, heterogeneity and variability of natural systems, whereas 2) field measurements cannot directly isolate heterotrophic 

soil respiration from autotrophic root respiration without substantially altering the system. Estimating Q10 directly from 25 

warming-induced changes in soil carbon stocks could be a valuable approach to address these limitations, but the variability 

and relative imprecision of soil carbon stock data necessitates a large sample size to adequately describe variation at the global 

scale (Bradford et al., 2016). Yet, results from a recent Earth system model meta-analysis indirectly suggests that, with enough 

sample coverage it may be possible to infer Q10 directly from changes in soil carbon stocks (Todd-Brown et al., 2014). 

Here we present a new approach to estimate the global Q10 value from net changes in soil carbon stocks under warming, rather 30 

than soil respiration measurements, and examine the consequences of these estimates –with associated uncertainty– on CMIP5 

Earth system model projections of global carbon storage over the rest of the 21st century. To do this, we use a global database 

of soil carbon stock data from 36 field-warming experiments around the world, each of which includes control (ambient) plots, 

and those which have been warmed for extended (years to decades) periods of time (Crowther et al., 2016) (Tables SI1) and 
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outputs from 20 CMIP5 (Taylor et al., 2011) Earth system models RCP 8.5 business-as-usual experiment (Tables 1 and SI3). 

These field data were used previously to derive Earth system model independent estimates of global soil carbon temperature 

sensitivity where the effect of warming was isolated from other global change drivers or the interacting climate system 

(Crowther et al., 2016). In this study we develop a novel approach that enables us to explore these field results in the context 

of the temperature sensitivity function (Q10) used in integrated Earth system model. We then examine the consequences of the 5 

data-driven Q10 estimates, and the associated uncertainty, for CMIP5 Earth system model projections of global carbon storage 

over the rest of the 21st century using a novel post-hoc modification of the CMIP5 simulation outputs. 

2 Materials and Methods 

2.1 Field sites 

The field sites were drawn from a previous analysis (Crowther et al., 2016). From this initial database of 48 paired case-control 10 

studies, we selected 36 studies that were run longer than 2 years to match the metastable state assumption articulated below. 

18 of these sites were temperate grasslands, savannas, and shrublands, 10 temperate broadleaf and mixed forests, 6 tundra, 1 

boreal forests or taiga, and 1 site was in a Mediterranean forest, woodland and scrub. A traditional statistical analysis of the 

sites is provided by Crowther et al. (2016). For this study, we used the increase in soil temperature due to warming, length of 

the study, and the percent of soil organic carbon in paired warmed and control plots (Table SI1). 15 

2.2 Q10 calculations 

We calculated traditional Q10 estimates based on these warming-induced soil carbon losses, enabling us to embed this 

temperature sensitivity information into a soil decomposition model framework. Traditional soil decomposition models follow 

a first order linear decay framework where: 
!𝑪($)
!$

= 𝑢()(𝑡)𝒃 − 𝑪(𝑡)𝑲𝑸𝟏𝟎(𝑇, 𝑡)𝑨,         (1) 20 

where the C is a vector of soil carbon pools with unique turnover times, t time, uin a scaler of soil carbon inputs, b an allocation 

vector describing how the inputs are divided between the soil carbon pools, K is a diagonal matrix representing the 

decomposition rates of the pools, Q10 is a diagonal matrix with entries of the form 𝑞(
(5($)657)/9: representing the temperature 

sensitivity factor, T a scalar describing the soil temperature and T0 an arbitrary reference temperature, and A the transfer matrix 

representing movement of carbon between soil carbon pools. 25 

The temperature sensitivity was assumed to be constant across pools. This allows us to collapse the diagonal Q10 matrix to be 

collapsed into a single scaler value of the form 𝑄9:
(5($)657)/9:. This constant temperature sensitivity assumption is discussed 

below and follows the structure of the CMIP5 Earth system models. 

In general, there are three classes of pool structure for traditional models: independent where there was no exchange between 

soil carbon pools making A the identity matrix, cascade where pools with faster turnover times passed carbon to pools with 30 
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slower turnover times making A a lower triangular matrix, and fully feedback models where carbon was exchanged between 

faster and slower pools and vis-versa making A a fully dense matrix. In all cases KA is an M-matrix, implying there exists an 

inverse who’s entries are all positive. For the independent and cascade pools KA is diagonalizable, implying it can be broken 

down into a diagonal matrix D and an invertible matrix P such that KA=P-1DP. 

For most well-developed soils, soil carbon stocks are at a metastable state where soil inputs approximately equal outputs (see 5 

Results for discussion of Earth system model outputs). Given that KA is an M-matrix and this metastable state approximation, 

we can describe the total soil organic carbon as follows: 

𝐶 = =>?
@AB7

(CDC7)/B7,            (2) 

where C is the total organic carbon stock, u the sum of the soil inputs, and k a bulk decomposition rate that can be construct 

from the decay matrix KA and allocation vector of the soil inputs b. For details see of this derivation the SI: Mathematical 10 

Analysis. 

We can now describe the soil carbon stock difference between two soils with the same decay rate but different temperatures 

and inputs. This could either be two time points from a simulation where the soil output is close (within 10%) of the soil inputs, 

or a warmed treatment and a control: 

𝐶E = 𝐶9 F
=G
=B
𝑄9:
(5B65G)/9:H.           (3) 15 

For the field sites, we assume that the relative change in inputs due to warming is negligible compared to the effect on the 

decomposition rate across sites and that the main driver of differences in decomposition rates between control and treatment 

is the warming treatment. Leading us to:  

𝐶I = 𝐶J𝑄9:
6∆5/9:.            (4) 

Finally, we assume that the bulk density of the soil at a given site was unaffected by the warming treatment. This allows us to 20 

use the mass percent soil organic carbon instead of the soil organic carbon density for Eq. 4. 

2.3 Model-data integration: parameter fitting 

Given the relatively small parameter space, we choose a brute-force model-data integration approach where we iteratively 

calculated the predicted change in soil carbon stock given the control soil carbon (Eq. 4) across a range of Q10 values from 0.1 

to 5 in 0.1 increments. Data-model fits were scored using root mean squared error (RMSE) and linear regression (R2, slope 25 

and intercept). Q10 values were selected on low bias (slopes and intercepts within 2 standard deviations of 1 and 0 respectively) 

due to the relative insensitivity of the R2 and RMSE metrics (see Figure 1). To test for statistical power, we randomly sampled 

the data 1000 times with sample sizes from 5 to 34 sites and compared this to samples with randomly assigned control vs 

warming (for each study the percent carbon of control and treatment has a 50% chance of being switched). These random and 

sample generated Q10 distributions, were compared using a two-sample Kolmogorov-Smirnov test to test that the distributions 30 

were statistical distinct. 
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2.4 Earth system model analysis 

Earth system model simulations were drawn from CMIP5, the Coupled Model Intercomparison Project to support the 5th IPCC 

assessment report (Taylor et al., 2011). We downloaded simulation outputs from the RCP 8.5 scenario, representing the 

‘business as usual’ scenario, including heterotrophic respiration (rh), soil temperature (tsl), and heterotrophic carbon stock 

(cSoil, cLitter, and cCwd) from the CMIP5 repository on the Earth System Federation Grid. Ten-year means were taken at the 5 

beginning and end of the 21st century for each variable (corresponding to 2006-2015 and 2090-2099). Soil temperature was 

averaged for the first 10 cm to correspond with experimental surface temperature readings. Soil carbon stock was calculated 

by adding all heterotrophic-respiring pools (including soil cSoil, litter cLitter, and coarse woody debris cCwd) where multiple 

pools were reported. Soil carbon inputs were calculated from the monthly change in soil carbon stock plus the reported 

heterotrophic respiration. Model variable summaries can be found in Tables SI3 and processing code is documented in SI. 10 

These 20 Earth system models are built from previous models which contain 10 distinct soil sub-models (Table 1). The number 

of soil carbon pools in these ESMs varied from 1 (INM-CM4) to 8 (BCC-CSM1.1) with most models having 2 to 5 pools. 

None of the models reported soil carbon with depth although GFDL documents a depth dependent model. There were three 

classes of pool structure for these models: independent where there was no exchange between soil carbon pools, cascade where 

pools with faster turnover times passed carbon to pools with slower turnover times, and fully feedback models where carbon 15 

was exchanged between faster and slower pools and vis-versa. In this set of models; 2 of these soil models were full feedback 

models (HadGEM, ISPL-CM), 6 were cascade pool structure (MRI-ESM1, MIROC-ESM, MPI-ESM, CLM4.0 [CESM1, 

CCSM4, NorESM1], CanESM2, BCC-CSM1.1), and 2 were independent pools (GFDL-ESM2, INM-CM4). Only 1 model 

documented an explicit constant Q10 (INM-CM2, Q10=2), 1 model documented a temperature dependent Q10 (CanESM2), 1 

proposed a unique temperature sensitivity (HadGEM2), 4 models documented a temperature sensitivity from Lloyd and Taylor 20 

which behaves very similar to Q10=2 under moderate temperatures (Lloyd and Taylor, 1994), and the remaining 3 (ISPL-CM5, 

GFDL-ESM2, BCC-CM1.1) all used a variation of the temperature sensitivity proposed in CENTURY (Parton et al., 1987, 

1988) which also behaves very similar to Q10=2 under moderate temperatures (Lloyd and Taylor, 1994). The ESMs considered 

had a single global Q10, or Q10-formula dependent on temperature, uniformly applied to the decay pools. This documented 

structure should be approached with caution due to frequent lags between model development and documentation, actual 25 

values and functions may differ. For details with citations see Table 1. 

Soil carbon stocks at the beginning of Earth system model simulations are typically spun up to close to steady state, and there 

is numerical support that this holds throughout the simulation (see Results and Figure S3), then Eq. 3 can be extended to the 

change in soil carbon stock over the 21st century. This leads to the following explicit calculation for a Q10 value at each grid 

cell. 30 

ln	(𝑄9:) = O 9:
5P65Q

R lnO
SQ
SP

=P
=Q
R	,          (5) 

where the Q10 value is related to the modern soil temperature Tm, future soil temperature at the end of the 21st century Tf, 

modern soil inputs um, future soil inputs uf, modern soil carbon stock Cm and the future soil carbon stock Cf. 
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For soils that are very close to zero soil carbon stocks, have minimal shifts in temperature or have very low soil inputs, the 

estimated Q10 is not finite. Similarly soils which are not well described by their shift in temperature (for example, if there is a 

significant shift in the moisture regime) may have non-typical Q10 values that are either less than 0.5 or greater than 5. We 

examined the amount of shift in soil carbon stocks associated with the four categories of Q10 values (nonfinite, less than 0.5, 

greater than 5, or typical), as well as the spatial patterns associated with these categories. 5 

To support the assertion that the Q10 value can be calculated from relatively short time scales found in the field experiments, 

we examined the distribution typical Q10 values associated with similar temperature steps experienced by the field experiments 

at 1, 5, 10, 15, 20, 50, 75, and 84 year time-scales using 10-year mean gridded values of soil carbon stocks, soil inputs, and 

soil temperature. It should be noted however that changes in the moisture conditions over the 21st century may complicate this 

analysis of the Earth system model simulations, thus it is not an exact proxy for the field experiments where the control and 10 

treatment plots experienced similar baseline climate conditions and a more or less constant offset throughout the experiment. 

Finally, the Q10 distribution was scaled to reflect the best estimate and uncertainty from the field data. This distribution shift 

was done by normalizing the Q10 map to the mean of the distribution and multiplying it by the experimentally derived values. 

The Q10 correction was only applied to grids with typical Q10’s (non-typical Q10’s were considered to have predominately non-

temperature driving variables and their soil carbon stocks were not altered). This normalization shifted the global Q10 15 

distribution within the models to match the most common (geographically likely) Q10 with the data-drive Q10 value, yet by 

preserving the distribution we preserved other factors affecting changes in decomposition rate (i. e. moisture shifts) in the 

model. We then recalculated the change in soil carbon for each grid cells with this modified Q10 according to Eq. 3 and 

calculated the global area-weighted totals. 

The full analysis script and those used to generate the figures are available in the supplemental. 20 

3 Results 

From the changes in soil carbon stocks across field studies, we find a global Q10 of 2.2 (90%CI 1.6, 2.7; R2 > 0.95, root mean 

squared error < 2; Figure 1, Figure S2). The model-data fit was evaluated using a linear regression and root mean squared error 

(Figure 1). While the R2 of the model-data comparison was relatively insensitive to the Q10 value, there was a notable 

improvement in the bias with Q10 (as defined as the slope within 2 standard deviations of 1 and intercept within two standard 25 

deviations of 0). This bias-driven criteria was used to select Q10 values from a prior range of (0.1, 5), see Methods for details.  

The Q10 distribution was compared with a random null distribution and was significantly distinct (Kolmogorov-Smirnov 

D=0.441, p < 2e-16, See Table S2, Figures 2 and S1). Randomly selecting 5 to 34 sites from the full dataset were compared to 

a null distribution where control vs warmed labels were randomized. The quartiles of the data subsets notably converged at a 

sample size of 25 where the null distribution was relatively invariant across sample size (Figure 2). The distribution of the Q10 30 

values under null appeared log-normal, centered around 1 demonstrating no temperature effect (Figure S1). The distribution 

of the Q10 range for the data subsets converged to around 2.2 (Figure S1).  
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The balance between gridded soil inputs and heterotrophic respiration at both the initial and final 10-year mean for the 21st 

century was within 10% for over 93% of the grid cells across all models. Most models had 95% and two models consistently 

had 100% of their grid cells within 10% -- the absolute value of the net flux was within 10% of the highest primary flux (Figure 

S3). 

The inferred Q10 values in the Earth system models derived from 10-year mean changes across different time steps (1, 5, 10, 5 

15, 20, 50, 75, and 84 years) had similar distributions in most of the models (Figure S4). Differences in inputs and heterotrophic 

respiration drove some differences in the Q10 distribution in the MIROC-ESM models. There were minor shifts in the mode of 

most models which could be attributable to changes in the moisture conditions or other (non-temperature or input) 

environmental variables in the simulation. Models aggregated across common land models showed marked similarity in their 

Q10 distributions (Figure S5). There was also an extremely high correlation between Q10 values derived from soil inputs 10 

compared to those derived for heterotrophic respiration across all models (Figure S6). 

The inferred Q10 values in the Earth system models from the decadal average across the 21st century fell into four categories 

(nonfinite, less than 0.5, greater than 5, or typical; Figure S7), however most of the change in soil carbon stocks over the 21st 

century occurred in grid cells with typical Q10 values between 0.5 and 5 (Figure S6). A notable exception to this trend was the 

MRI-ESM1 model where roughly half of the change in carbon stocks occurred in grid cells with Q10 values greater than 5 15 

(Figure S6). Spatially the Q10 categories showed strong geographical patterns (Figure S7). The GFDL-ESM2 models were 

dominated by non-finite values in high northern latitudes (Figure S7). MIROC-ESM, CCSM4, CESM1, and NorESM1 models 

were dominated by Q10 values above 5 in the high northern latitudes (Figure S7). Unless otherwise noted, only typical Q10 

values are addressed for the remainder of this study. 

The inferred Q10 values for the decadal average across the 21st century, also showed strong geographic patterns (Figures 3) 20 

and was typically unimodal (Figure S6). MIROC-ESM and MIROC-ESM-CHEM showed the weakest spatial patterns with 

high grid-to-grid variation (Figure 3). Mean Q10 values fell within the 90% CI of the field data Q10, ranging between 1.8 

(GFDL-ESM2G) and 2.6 (MIROC-ESM-CHEM), with the multi-center Q10 values at 2.0 ± 0.2 (Tables 2). 

When the inferred Q10 values were modified to reflect the data-driven Q10 range, resulting variation in the multi-center mean 

was almost as large as the variation across model projections (Figure 4, Table 2). Re-centering the global Q10 distribution to 25 

reflect the range of field-driven Q10 values (Figure S8) resulted in changes in soil carbon stocks over the 21st century of between 

-452 Pg-carbon (MPI-ESM-MR) and 285 Pg-carbon (HadGEM2-CC) with a best-estimate Q10 (Q10 = 2.2) resulting in 16 ± 

156 Pg-carbon (multi-center mean ± 1 SD) and field-drive bound (Q10 = 1.6, 2.7) of [245 ± 194, -99 ± 208] Pg-carbon (Figure 

4, Table 2).  

4 Discussion 30 

By capturing information about warming induced changes to relatively undisturbed field soil carbon stocks directly rather than 

inferring this from soil respiration rates, this is the first study to generate field Q10 estimates of soil carbon losses without 
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needing to correct for belowground autotrophic respiration. Using a simplified version of a traditional decomposition model 

with a temperature sensitivity function, we estimate that the global Q10 value is 2.2 ([1.6, 2.7] 95%CI, Figure 1, S2). This Q10 

is notably higher than previous global estimates based on field soil respiration data (Q10 = 1.4 to 1.5 (Bond-Lamberty and 

Thomson, 2010; Mahecha et al., 2010)), yet well within the range of estimates from laboratory-based studies (Davidson and 

Janssens, 2006) as well as close to documented temperature sensitivity parameters (~2) of Earth system models (Table 1). 5 

This Q10 range is statistically significant. Resampling the 36-study data set demonstrates the need for over 25 sites to 

distinguish the Q10 range from random (Figure 2 and S1). While the Q10 distribution for the 34-study subset is distinct from 

the null (Kolmogorov-Smirnov D=0.441, p < 2e-16), there appears to be some minor drift in the range suggesting that more 

study sites could be informative.  

Inferring a decadal-scale environmental sensitive from an annual-scale experiment is controversial but support by both 10 

traditional model structure and numerical trends in the Earth system model. In the traditional model structure the temperature 

sensitivity function is applied as a single scaler to multi-pool models causing the relative decomposition response in both fast 

and slow pools to be the same (for example, (Parton et al., 1987)). Examining the inferred gridded Q10 values from annual 

means across time scales from 1 year to 84 years in Earth system models shows a strong similarity in the distribution most 

models (Figure S4), with the notable exception of MIROC-ESM which is explained by unusual differences in soil inputs and 15 

outputs (Figure S4). Differences in the Q10 distribution across time scales are likely driven then by interaction with other 

sensitivity functions like moisture. 

If soils are more sensitive to warming than previously expected, then how would this affect future soil carbon stocks over the 

21st century? To address this question, we turned to the CMIP5 Earth system models run under RCP 8.5 (Taylor et al., 2011). 

In order to modify the Earth system model output to reflect the data-driven Q10 we applied similar assumptions used in the 20 

field-data analysis. We first examine the temperature sensitivity of CMIP5 Earth system model simulated soil carbon stocks. 

In contrast to the field data, we take into account the effect of the change in soil inputs on soil carbon stocks in the Earth system 

models because these coupled simulations include CO2 fertilization and other climate effects known to influence primary 

production (see Methods, Eq. 5). Though these inferred Q10 values (Q10 = 1.8, 2.6) fall within the uncertainty of the field 

derived Q10 values (Q10 = 1.6, 2.7), most EMS-Q10 modes (most common gridded Q10 value within each ESM) fell under the 25 

median data-Q10 value of 2.2 (Table 2) implying ESMs were, on average, less sensitive to temperature shifts than the field 

warmed data would imply. It should be noted that this inferred Q10 value is not exactly the parameterized Q10 value, and is 

instead a combination of the temperature sensitivity and other environmental sensitivities. If there were, on average, an 

additional constraint on respiration (such as moisture) we might expect the inferred Q10 parameter to be lower than the model 

parameterized Q10. 30 

There were notable regional patterns across all but 2 of the Earth system model inferred Q10 (Figure 3, S7). High northern 

latitudes tended to have either large or non-finite Q10 values suggesting that something other than temperature and input shifts 

were driving changes in soil carbon stock. This alternative driver could be a shift in moisture regimes or dynamics driven by 

thaw thresholds, this should be a focus of future research. 
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Propagating this field-Q10 range into the ESM projections resulted in greater carbon losses from the soil by the end of the 21st 

century (multi-center means the of soil carbon change, shifted from 83 to 16 Pg-carbon) with large uncertainties; ESM multi-

center standard deviation was initially 156 Pg-carbon which is half of the range in multi-model mean attributed to Q10 95% CI 

[245, -99] Pg-carbon (Figure 4, Table 2). To calculate these modified projections, means of the model specific Q10 distributions 

were re-centered to reflect the best estimate Q10 and associated 95% CI from the field data analysis. By preserving the 5 

distribution within the model, we attempted to propagate soil moisture sensitivities and other model-specific effects into the 

modified projections. We also did not modify grid cells with non-typical Q10 values (non-finite, below 0.5 or above 5) since 

those grids likely governed other non-temperature drivers. The large range of carbon shifts in each ESMs driven by this Q10 

CI confirms the importance of considering parameter uncertainty in the land carbon component of Earth system model 

projections. The post-hoc correction that we present provides an innovative way to account for this parameter variation without 10 

the computational burden of additional ensemble runs. 

This analysis includes several basic assumptions and caveats. Specifically, we assume that the difference between treatment 

and control is driven entirely by the soil warming effect, and those warming effects are uniform across soil carbon quality. 

Though warming-induced changes in soil inputs are, on average, relatively small, they are have been shown to be highly 

variable in similar sites (Lu et al., 2013). The analysis of field data could be extended to account for these changes in inputs in 15 

follow-up studies (Eq. 3). A large increase in soil inputs would cause an underestimation of the Q10 value, while a decrease in 

soils inputs would cause an overestimation of the Q10 value (see Eq. 3). While there is some evidence to support temperature 

sensitivity dependency on soil carbon quality (Knorr et al., 2005), there is also evidence for a uniform temperature sensitivity 

(Hicks Pries et al., 2017). as is represented in the Earth system models considered in this study (Table 1). A quality dependent 

Q10 would not be separable from the bulk decay term and thus a one pool model would be inappropriate in this case (see SI). 20 

In addition, the dataset has acknowledged biases (see Crowther et al., 2016), which are typical of field studies. 

4.1 One pool simplification 

We find that multi-year soil carbon dynamics can be well-described by a one pool model at a specific time scale in both the 

Earth system models and field experiment. If we restrict the decomposition models to those with either independent or cascade 

pool structures (that is no carbon passed from the slow to the fast pools) then the temporal dynamics of the total soil carbon of 25 

the system at a specific time scale can be approximated by a single pool due to the fact that the lower triangular decomposition-

transfer matrix is diagonalizable (see SI for details). While this diagonalizable property does not hold for full feedback models 

where carbon is transferred from the slower to faster carbon pools, all decomposition-transfer matrices are M-matrices. If we 

combine the positive-inverse properties resulting from this M-matrix structure and assume that the soils are close to metastable 

state (that is soil inputs are roughly equal to the heterotrophic respiration outputs, as we show in Figure S3 for the Earth system 30 

models considered and would expect for soils from intact systems). Then the total soil carbon can be described by a bulk decay 

rate that is a linear combination of the transfer coefficients, decay rates, and input allocations of the component pools (see SI 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-72
Manuscript under review for journal Biogeosciences
Discussion started: 15 February 2018
c© Author(s) 2018. CC BY 4.0 License.



10 
 

for analytical details). This provides analytical support for the one pool simplification seen numerically in the Earth system 

models in the CMIP5 project (Todd-Brown et al., 2013, 2014). 

The one pool simplifications described above are controversial assertions. The one pool model has proven inadequate to 

describe laboratory incubations where heterotrophic respiration over time is compared to the soil carbon stock (Thornton, 

1998; Weng and Luo, 2011). This is due to the multiple time scales considered (daily, monthly and annual) and, more 5 

importantly, the fact that these laboratory incubations are by their nature not at steady state since any inputs to the system are 

generally removed. Thus this analysis would not be expected to hold for laboratory incubation and we would further expect 

the bulk decay rate to change with time scales (in other words, the bulk decay rate inferred at a 1 year time step would not 

match the 100 year time step). However, the scalar multiplier representing environmental sensitivities are independent of pools 

in most models (ex (Parton et al., 1988)). These scalar multiplies (like the Q10 temperature sensitivity examined in this study) 10 

would be invariant to time scale. 

5 Conclusion 

It is still unclear how the terrestrial carbon cycle in general, and soils in particular, will respond to climate change over the 21st 

century. The CMIP5 models, representing our best coupled climate models to date, have a wide range of soil carbon responses 

over the 21st century (Todd-Brown et al., 2014). While it would be nice to have all the models agree on a tightly bound answer, 15 

the question we should be asking scientifically is: Does the variation in the models reflect our best scientific understanding? 

Models must capture not only mean trends but also system variance and accurately represent scientific uncertainty. 

Post-hoc correction of simulation results can provide some insight into known gaps in Earth system models without the 

computational hurdle of re-running simulation results. Previous studies have address nutrient limitations on net primary 

production (Wieder et al., 2015) and this study demonstrates the high level of uncertainty that can be driven by the soil 20 

temperature response parameter. This study suggests that soil carbon response to warming is highly variable in the field and 

model studies should increase their variability to capture this. Future studies explaining field moisture and applying that 

understanding to a post-hoc Earth system model analysis is a logical next step.  
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Figure 1: The model-data fits across different Q10 values for random subsets of 34 sites including the root mean squared error, and 
linear regression metrics R2, slope, and intercept. The model is take from Eq. 4 (𝑪𝒘 = 𝑪𝒄𝑸𝟏𝟎

6∆𝑻/𝟏𝟎). Slope and intercept values are 
shown with 2 standard deviation error bars. 
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Figure 2: The Q10 with good 1-to-1 model-data fits defined in Figure 1, at 90% confidence interval (band) with minimum and 
maximum values (dotted line) and median value (solid line), across 10 different sample sizes ranging from 5 to 34, for the original 
data set (True: blue) and randomized case-control (Random C-C: red). 
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Figure 3: Inferred Q10 values from the Earth system models (CMIP5, RCP 8.5). The colour scheme is centered around the field-
driven Q10 median value of 2.2. Grey indicates non-typical Q10 values that were either non-finite, less than 0.5 or greater then 5. 
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Figure 4: Changes in soil carbon stock (10 year means) over the 21st century from Earth system models (RCP 8.5). Grey dots are the 
original estimates, the open box is the soil carbon loss after the Q10 is rescaled using the 2.5%, 50%, and 97.5% quartiles from the 
field data 
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Model 

Center 

Earth system model Soil/land carbon  

sub-model 

Number of 

soil carbon 

pools 

Pool 

structure 

Temperature 

sensitivity 

Citations 

BCC BCC-CSM1.1 
BCC_AVIM1.0; 

AVIM2; CEVSA 
8 Cascade CENTURY 

(Cao & Woodward, 1998; Ji 

et al., 2008; Wu et al., 2013) 

CCCma CanESM2 CTEM 2 Cascade 𝑄9:(𝑇) 
(Arora, 2003; Arora & Boer, 

2010; Arora et al., 2011) 

NCAR CCSM4 

CLM 4.0; CN 7 Cascade 
Lloyd and 

Taylor 

(Thornton & Rosenbloom, 

2005; Thornton et al., 2007; 

Oleson et al., 2010; Gent et 

al., 2011; Lawrence et al., 

2011; Tjiputra et al., 2013) 

NSF-

DOE-

NCAR 

CESM1(BGC) 

CESM1(CAM5) 

CESM1(WACCM) 

NCC 
NorESM1-M 

NorESM1-ME 

NOAA 

GFDL 

GFDL-ESM2G 

LM3.0; ED 2 Independent CENTURY 

(Moorcroft et al., 2001; 

Shevliakova et al., 2009; 

Dunne et al., 2013) 
GFDL-ESM2M 

MOHC* 
HadGEM2-CC 

ROTHC 4 Feedback f(T) 
(Coleman & Jenkinson, 

1999; Collins et al., 2011) HadGEM2-ES 

INM INM-CM4 LSM 1.0 1 Independent Q10=2 
(Bonan, 1996; Volodin, 

2007) 

IPSL 

IPSL-CM5A-LR 

ORCHIDEE 5 Feedback CENTURY 

(Krinner et al., 2005; 

Dufresne et al., 2013) IPSL-CM5A-MR 

IPSL-CM5B-LR 

MIROC 
MIROC-ESM 

SEIB-DGVM 3 Cascade 
Lloyd and 

Taylor 

(Sato et al., 2007; Watanabe 

et al., 2011) MIROC-ESM-CHEM 

MPI-M MPI-ESM-MR JSBACH 5 Cascade 
Lloyd and 

Taylor 

(Giorgetta et al., 2013; 

Schneck et al., 2013) 

MRI MRI-ESM1 LPJ-DGBM 3 Cascade 
Lloyd and 

Taylor 

(Sitch et al., 2003; Obata & 

Shibata, 2012; Adachi et al., 

2013) 

Table 1: This is a summary of the soil decomposition sub-models for the ESMs used in this study and includes the number of pools, 
structure of the carbon exchange between those pools, temperature sensitivity function, and citations. Temperature sensitivity 
function is either denoted as: CENTURY: borrowed from the Century model (Parton et al., 1987, 1988), Lloyd and Taylor: taken 
from the recommended form from (Lloyd & Taylor, 1994), Q10(T): a temperature dependent Q10 as defined by (Arora, 2003), f(T): 
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a unique temperature sensitivity function defined by (Coleman & Jenkinson, 1999), or a Q10 parameter for the Q10 function as 
defined in this manuscript. 
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SOC 

[Pg-C] 

Rel. 

Inputs 

dT 

[°C] Q10 

dSOC 

[Pg-C] 

dSOC 

Q10=1.6 

dSOC 

Q10=2.2 

dSOC 

Q10=2.7 

BCC-CSM1.1 1050 1.40 3.7 2.2 198 312 198 134 

CanESM2 1541 1.29 7.1 2.0 -53 239 -158 -354 

CCSM4 575 1.32 4.2 2.0 -12 27 -28 -59 

CESM1(BGC) 575 1.29 3.8 1.9 -6 18 -24 -48 

CESM1(CAM5) 619 1.30 4.6 1.9 -22 7 -45 -74 

CESM1(WACCM) 559 1.32 3.9 2.0 -14 15 -25 -48 

GFDL-ESM2G 1422 1.41 5.1 1.9 -2 25 -23 -49 

GFDL-ESM2M 1278 1.38 4.5 2.0 -8 36 -24 -56 

HadGEM2-CC 1122 1.55 8.4 1.9 285 525 118 -71 

HadGEM2-ES 1129 1.56 8.3 1.8 259 417 41 -133 

INM-CM4 1688 1.27 3.3 2.3 69 238 88 2 

IPSL-CM5A-LR 1361 1.48 8.2 1.8 28 192 -205 -394 

IPSL-CM5A-MR 1403 1.43 7.6 1.8 7 158 -209 -387 

IPSL-CM5B-LR 1274 1.41 7.6 1.9 85 289 -63 -236 

MIROC-ESM 2586 1.35 7.2 2.5 -105 363 11 -170 

MIROC-ESM-

CHEM 2588 1.30 7.3 2.6 -89 467 75 -123 

MPI-ESM-MR 3110 1.31 6.3 1.8 212 461 -150 -452 

MRI-ESM1 1452 1.52 4.4 2.0 415 521 374 294 

NorESM1-M 610 1.31 3.7 2.0 -43 -19 -52 -71 

NorESM1-ME 618 1.32 3.6 2.1 -17 18 -22 -46 

Multi-center mean 1419 1.37 5.4 2.0 83 245 16 -99 

Multi-center sd 775 0.09 1.8 0.2 156 194 156 208 
 
Table 2: Global model summary with multi-center mean and standard deviation for modern soil organic carbon (SOC) stocks [Pg-
C], relative shift in soil inputs (𝒖𝒇

𝒖𝒎
), absolute change in soil temperature (dT) [°C], inferred mean of Q10 as calculated by grid cell (see 

Eqn 5), the change in soil organic carbon (dSOC) over the 21st century [Pg-C], and the change in soil organic carbon with rescaled 
Q10 values (1.6, 2.2, and 2.7). 5 

Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-72
Manuscript under review for journal Biogeosciences
Discussion started: 15 February 2018
c© Author(s) 2018. CC BY 4.0 License.


